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The enforcement of divergence-free condition in the interior and on
the boundaries of an incompressible flow with twe non-periodic
directions is discussed for 3 Chebyshev collocation formulation. An
influence matrix technique aleng with a correction methodology is
used to satisfy the continuity equation everywhere in the domain.
Details of implementing this procedure in a coilocation method are
presented. An efficient solution procedure based on matrix diagonaliza-
tion has been used to solve the resulting full matrices. Two test
problems: (a) flow in a driven square cavity, and (b} fully-developed
laminar flow in a square duct subject to a three-dimensional perturba-
tion are studied, Run-time statistics (CPU, memory, MFLOPS) of the
solution procedure are presented for representative grid sizes.  © 1993
Academic Press, Inc.

1. INTRODUCTION

The integration of Navier-Stokes equations with high
temporal and spatial accuracies is required in all applica-
tions of computational fluid dynamics, more so in direct
simulations of turbulent flows {(e.g., [1, 2]). In comparison
with finite-difference and finite-element methods, spectral
discretization of the spatial derivatives where applicable is
the preferred approach due to its exponential convergence
property. However, because of their global nature, spectral
methods are more sensitive to the precise manner in which
the conditions at non-periodic boundaries are implemented.
in incompressible flows, the continuity equation has no
time-derivative terms and pressure becomes a diagnostic
variable ensuring that the velocity field remains divergence-
free, There has been much discussion in the literature [3-6]
on the specification of proper boundary conditions for
pressure. Different opinions exist on the proper boundary
conditions for the pressure Poisson equation obtained by
combining the momentum and continuity equations. While
alternate formulations such as those using vector potential
and vorticity as dependent variables {e.g., [7, 8] ) automati-
cally satisfy the incompressibility constraint, the primitive-

variable formulation (with w and p) continues to be
preferred by most rescarchers.

The implementation of the divergence-free condition in
the interior as well as on the boundaries differs between
implicit and explicit schemes. In a purely explicit scheme,
the satisfaction of interior and boundary divergences is
relatively easy as shown by Kun er al. [9, 10]. However,
purely explicit formulations impose severe restrictions on
the allowable time increment when used with Chebyshev
collocation. The explicit treatment of the diffusion terms
requires that the stable time increment vary as 1/N* where
N is the number of Chebyshev modes, An implicit treatment
of the viscous terms leads to momentum equations which
are very similar to those for the Stokes problem. The dif-
ficulty in solving these momentum equations along with the
continuity equation iies in the coupling of the scalar com-
ponents of the velocity field and the pressure. In problems
with only one non-periodic direction, the discrete version of
the coupled equations results in a blocked system of linear
equations for the velocity and pressure (Moin and Kim
[11], Malik et al. [12]). A direct inversion of these blocked
matrices is computationally expensive in a two- or three-
dimensional (2D or 3D} problem. If one resorts to iterative
techniques, the poor condition number associated with
the spectral second derivative operator requires efficient
preconditioners for rapid convergence.

The coupling between the velocity and pressure can be
reduced, although not completely eliminated, by solving a
Poisson equation for pressure. A simple way to achieve
complete decoupling is by time-splitting or operator-
splitiing technique of Chorin [13]. Here, the momentum
equations are first solved without the pressure gradient
terms. In the second step, a Poisson equation is solved for
a scalar potential and the velocities are corrected to satisfy
continuity. Since there are no natural boundary conditions
for the intermediate velocity and scalar potential fields,
several approximate conditions have been used by various
investigators (Ku ¢z al. [9], Kim and Moin [147, Streett
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and Hussaini [157). However, these procedures do not
guarantee zero divergence at the boundaries. In addition,
small slip velocities are produced at the boundaries. While
these errors may be small and harmless to the eventual
objective, they are not satisfactory if their effect is unknown.

As an alternative to time-splitting techniques, Kleiser and
Schumann [16] proposed an influence matrix method to
decouple the pressure Poisson equation from the momen-
tum equations and obtain zero boundary divergence. In this
technique, the momentum equations are first solved with an
arbitrary boundary pressure distribution and the resulting
divergences on the boundary are calculated. Using a pre-
determined influence matrix, corrections to the boundary
pressures are evaluated. These boundary pressures are then
used to obtain a new pressure ficld and the final velocity
field is obtained by solving again the momentum equations.
Although this method is computationally more expensive
than methods using operator-splitting, the soiution has the
desired divergence-free properties. In principle, the influence
matrix approach should give zero boundary and interior
divergences at the end of the time step. However, because of
the discrete nature of the momentum equations, small but
non-zero divergences appear at the interior points. This
situation was remedied by Kleiser and Schumann [16] by
proposing a “tau correction” to obtain the correct pressure
field. Kleiser and Schumann [16] demonstrated this
procedure in the spectral-tau context for a flow with
one non-periodic direction and two periodic directions.
A collocation implementation of this correction for one
non-periedic direction was discussed by Canuto er al. [17].

The extension of the influence matrix approach to two
non-periodic directions in Chebyshev—colliocation context
was considered by le Quere and de Roquefort [ 18] and Ku
et al. [9] but only incompletely without the tau correction.
Therefore, its performance was observed to be inferior to
time-splitting methods for some model problems. Recently,
Tuckerman [19] has extended the “tau correction™ to
Chebyshev discretizations in two directions. Tuckerman’s
formulation and solution were primarily in the context of a
spectral-tau procedurc. However, from an implementation
viewpoint, collocation methods are preferred (Canuto ef al.
[17]) despite their larger computational costs over spec-
tral-tau methods. In the present paper, the implementation
of the influence matrix approach for two non-periodic
directions, including a correction for interior divergences, is
demonstrated for a Chebyshev—collocation procedure.

The present study was motiviated by our final objective to
study the structure of fully developed turbulence in a duct of
square cross section. The contributions of this study are
primarily in the implementation and assessment of a
Chebyshev—collocation procedure with a correction for
interior divergences. We also discuss the added CPU time
and memory for this procedure as compared to the time-
splitting and without the “collocation correction” proce-
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dures. Two applications: (a) flow in a driven square cavity
and (b) decay of a 3D perturbation in a fully developed
laminar flow are considered for demonstration. In Section 2,
the basic solution procedure with the traditional influence
matrix approach is described. In Section 3, the “collocation
correction” for obtaining zero interior divergences is
explained. The applications are presented in Section 4 and
the conclusions are given in Section 5.

2. BASIC SOLUTION METHODOLOGY

We begin with the non-dimensionalized Navier—Stokes
equations for the conservation of mass and momentum for
an incompressible flow with constant properties and no
body forces,

V-ou=0 (1)

du 1
M V. fau) = —V5 +— V2
Y +V - {uu) Vp+ReV u, (2)

where u, p, ¢, and Re are the velocity, pressure, time, and
Reynolds number, respectively. We consider the solution of
these equations with the boundary conditions u,=q on x
and y boundaries and periodic conditions in the z-direction.
Let £ denote the interior of the domain of interest and 90
denote its non-periodic boundary. A semi-implicit dis-
cretization in time of the governing equations by the
Adams-Bashforth scheme for the convection terms and the
Crank-Nicolson scheme for the diffusion terms gives

“n+1_un 3 . 1 -
T*(EH —3H )
1
- _ p~n+1+m(v2un+l+vzun) (3)
Voutt=0 (4)
wtl=q""" on 082, (5

where H represents the convective terms. Equation (3) can
be abbreviated as

(V2 —2Re/dn)u"+  —Vp**t!l=8§ {6)

where p=2Re f, and S includes all the terms evaluated
explicitly,

S = —(V2+2Re/dt)u" + 2ReGH" — LH" ). (7)

The momentum equations are thus reduced to the Stokes
equations. They are coupled to each other through the
pressure gradient term such that the velocity field remains
divergence free. In an unsplit decoupled procedure, the
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momentum equations are solved in conjunction with an
equation for pressure. By taking the divergence of the
momentum equation, the familiar pressure Poisson
equation,

V2pn+l=_v.s (8)
can be obtained if the following condition is satisfied by the
divergence of velocity:

(V2 —2Refdt)V-u"*'=0 in 2. )]
From the above equation, it can be seen that V-u”*' is zero
in the interior if and only if V. u”"* ! is zero on the boundary,
Therefore, if pressure is obtained from Eq. (8) such that
V.u"*'=0 on 42, then the velocity distribution deter-
mined using this pressure distribution in the momentum
equations would satisfy the continuity equation in the
interior. This coupling between the velocity and pressure
fields can be resolved by the influence matrix approach.

2.1. Influence Matrix Method

The influence matrix method originally due to Kleiser
and Schumann [16] relics on the linearity of the time
discretized momentum and pressure equations to combine a
series of boundary pressure distributions which will even-
tually satisly V-u"*'=0in  and on #€. Let the pressure
and velocity fields be given by the sum of a particular
solution and a complementary solution.

p’tl=p,+p, and wT'=w,+u. (10
The particular solutions are obtained with arbitrary (say,
zero} pressure boundary conditions and given velocity
boundary conditions as

Vp,=-V.-§ inQwithp,=0 ondQ (11)
(V> —2Re/dt)u,—Vp,
=S in 2 withu,=q on 8. (12)

The complementary solution in turn is represented as the
sum of a series of compiementary functions {Green's
functions) as

Pc-—‘): % P “c:z o, (13)
The summation is over all §, and i= 1 to N,, where N, is the
total number of boundary points excluding the corners.
Each complementary function (p;, i;} is a solution to the
governing equations with zero source terms (i.e., $ =0). The
pressure field is solved with zero Dirichlet conditions at ail
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but one of the boundary points. Using this pressure field,
the momentum equations are solved with homogeneous
boundary conditions. Thus, the complementary functions
are solutions to the following equations,

V3,=0  inQwith(5),=6, ondQ2 (14)
(V2 — 2Re/At) &, — V,
=0 inQwitha,=0  onaQ, (15)

where (p,), is the value of the ith complementary pressure at
the jth boundary point and j=1 to N, represents all the
boundary points in some sequential manner. The «/'s are in
effect the unknown boundary pressures that need to be
determined such that the boundary divergence of the final
velocity field (u,+u,) is zero. Therefore, at every jth point
on the boundary,

_ (16}

J

(z AR ﬁi) =—(V.u,);
from which «;'s can be determined as

[al=—[AT7' [(V-u,)s], (17)

where the subscript & denotes the boundary and
A =[(V-u,),] is the influence matrix. The influence matrix
(A) is evaluated and its inverse 1s stored at the beginning of
the entire solution procedure. As it is not feasible to store all
the complementary functions except for very small grids, the
pressure and momentum equations are solved again with
the new boundary conditions. The pressure equation
(Eq. (9)) is solved with the boundary condition p;,==, on
32 and the momentum equations are solved using this
pressure distribution.

The discretized momentum equations are 3D Helmholtz
equations and the pressure equation is a 3D Poisson equa-
tion. In our 3D problem of interest, the flow is non-periodic
only in two directions (x and y) and periodic in the third {z)
direction. Therefore, the flow variables can be expanded in
Fourier series in the z-direction, and the Fourier transforms
of the momentum and pressure equations yield 2D
Helmholtz equations for each wavenumber in the
z-direction. Chebyshev polynomials are used to expand flow
variables in the two non-periodic directions. The resulting
2D Helmholtz equations for each wavenumber can be
solved efficiently using the matrix diagonalization proce-
dure [20, 177 and the reduced matrix method [10]. At first
sight, the work involved in the influence matrix method
appears to be twice the work of an operator-split method.
However, only the momentum equations in the non-
periodic directions and the pressure equation need to be
solved twice. Also, the nonlinear term (S} needs to be
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computed only once. Thus, the increase in work is less than
a factor of two. In our demonstration calculations, we
observe an increase of only 35% over a split method.

The above described method has been used by le Quere
and de Roquefort {18] and Ku et al. [9]. However, the
velocity field obtained from the above procedure is not
divergence-free in the interior. This is because, in a discrete
sense the momentum equations are not satisfied at the
boundaries but are assumed to do so in obtaming the
Poisson equation for pressure (Eq. (9)) thereby resulting in
small errors. Kleiser and Schumann [16] estimated these
errors to be proportional to the Chebyshev coefficients of
the two highest modes in the tau method. They also
reported that in some applications this led to numerical
instability. To obtain exact zero interior divergences,
Kleiser and Schumann [16] proposed a correction in the
tau context for flows with one non-periodic direction. This
correction has been recently extended to two non-periodic
directions by Tuckerman [19]. These two formulations
have been in the spectral-tau context. A collocation
implementation of this correction procedure for one non-
periodic direction was discussed by Canuto et al. [17]. We
present below the details of implementing the “collocation
correction” for two non-periodic directions.

3. CORRECTION FOR INTERIOR DIVERGENCES

The reason for the appearance of non-zero interior
divergences in the above-described procedure is the dis-
creteness of the spatial operator [16, 19]. Thus, while the
influence matrix procedure described in the previous section
1s sufficient to ensure divergence-free condition everywhere
in the domain in a continuous formulation, the discrete spa-
tial representation of the equations (which is unavoidable
in any numerical procedure) leads to interior divergences.
This is because the discrete momentum equations are not
satisfied on the boundaries and consequently the estimation
of the pressure field is in error. However, if these boundary
momentum residuals are included in the procedure, the
interior divergences can be made zero.

The discrete momentum equations that are actually
solved can be expressed as

(V2—2Re/d)w"t —Vp"* ' =S +B"* ", (18)

where B 1s the residue in the discretized momentum
equations and is zero at the interior collocation points but
non-zero on the boundaries. The non-zero value of B on the
boundary is not known a priori. The corresponding Poisson
equation for pressure is

Vil V.§—V.B"+1 (19)
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The non-zero value of B on the boundary directly influences
only the pressurc equation and not the momentum
equations. It is now desired to include the effect of B in
determining the pressure field such that both the interior
and the boundary divergences are zero,

The crux of this correction procedure is to generate
another complementary solution that will account for the
non-zero boundary residual in the momentum equations.
The second complementary solution is again represented as
a sum of a series of complementary functions. Thus, the
pressure and velocity are given by

P :pp+zaiﬁi+2ﬁi;5i9

=+ o+ Y B

(20)

The summation is once again over all the boundary points
excluding the corners. The particular solutions and the first
setl of complementary functions are obtained as before. The
second set of complementary functions are to account for
the boundary residual in the momentum equations. Each of
these complementary functions (p,, #,;) is a solution to the
governing equations with zero source terms (i.e., §=10) and
homogeneous boundary conditions. The pressure field is
solved with a unit momentum residual at one of the
boundary nodes. The momentum equations are then solved
using this pressure field. These complementary functions are
thus solutions to the equations

Vip,=V.-b,b,=0 in  with
i, (21)
(p);=0,(b;-m); =06, on 0€2
(V?—2Re/At)u,—Vp,=0 in 2 with
. (22)
u,=0 on 4Q,

where b, is the vector field of momentum residuals and n is
the normal to the boundary. It should be noted that in a
spectral collocation procedure, only the normal component
of the momentum residual (B.») at the boundary
contributes to V- B at the interior points. The residuals in
the tangential momentum equations on the boundary are
inconsequential and, therefore, only the normal momentum
residuals are used in the construction of the second set of the
complementary functions.

The unknown coefficients o,'s and f;s in Eq. (20) are to
be determined such that the velocity field has zero interior
as well as boundary divergences. Physically, the os repre-
sent the boundary pressure distribution and it will be shown
later that the f/s represent the residuals in the normal
momentum equation at the boundary. An extended
influence matrix is therefore constructed to evaluate these
2N, unknowns. The incompressibility condition and the
normal momentum equation at the boundary provide



A CHEBYSHEY COLLOCATION PROCEDURE

the necessary relations. The divergence-free condition on
the boundary requires that

Vou,+3 Vi, +3 fV-u,=0 ondQ. (23)
The discretized normal
boundary is writien as

momentum equation at the

]:(V2 —2Re/dr) [up +Y am+y ﬁ,-ﬁ,}

’V(pp-f-Za,-ﬁ,--I-Zﬁ,ﬁ,-)=S+B}-n,

L

(24)

where j= | to N, denotes the boundary points. Substituting
the governing equations for the particular and complemen-
tary solutions, we obtain

(B, n}+Y o,(B,-n),+Y B.(B,-n),=(B-n),, (25)

where

B,=(V?—2Re/At)u,—Vp,—S
B,=(V?—2Re/dt)u,— Vp,
B,=(V? - 2Re/dt) i, Vp,

(26)

are the residuals in the momentum equations of the par-
ticular and the two sets of complementary functions. Using
the Poisson equations for the particular and the two sets of
complementary solutions of pressure (Eqgs. (11), (14), (21})
along with Eq. (19), it can be shown that the total residual
in the normal momentum equation at the boundary,
{B-n),, is given by

(B ‘")j= ’Z Biib;-n);= _Bj'

Upon substituting Eqg. (27) in Eq.(25) and combining
Eq. (23) and (25), we obtain for the unknowns «,'s and f,'s:

[(Y'ﬁi)j =(V'ﬁi)j ][“f:l= _[(V'“p)j:l (28)
(B;-n); (Bi-nm) 44,01 B, (B,-n); .

The matrix on the left-hand side of the above equation is the
total influence matrix when the “collocation correction” is
included and accounts for both the boundary divergences

and the boundary momentum residuals. Denoting this
matrix by C, we have

bl=re

The influence matrix C is computed for each wavenumber in

(27)

{25)
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z and its inverse is stored at the beginning of the solution
procedure. This inverse is then used to compute the weights
a/s and fi's of the complementary functions at all other time
steps. As before, after obtaining the o,'s and /s, the pressure
and momentum equations are solved for the second time.
Since the second set of pressure complementary functions
are solved with homogeneous boundary conditions, the
final pressure equation is solved with the boundary condi-
tion p, = o, on /L2 and the right-hand side given by —V -8 +
3 V-B,b,. This pressure ficld is then used to solve the
momentum equations in the non-periodic directions for the
second time, Since the momentum equation in the periodic
direction does not affect the computation of a;’s and /s, it
is solved only after obtaining the final pressure field. The
resulting velocity field is then divergence-free everywhere
in the domain at the end of the time advancement. The
solution cycle can be summarized as follows:

(i) Generate the influence matrix (C) for each
wavenumber in the periodic direction and store its inverse
at the beginning of the solution procedure. Then at any time
step;

(i1)
pressure;

(ili) Solve the momentum equations in the non-
periodic directions to obtain the particular solutions of the
velocities in the non-periodic directions;

First soilve for the particular solution of the

{iv) Compute the boundary divergence and the
boundary residual in the normal momentum equation
corresponding to the particular solution;

(v} Determine the boundary pressures (2;s) and the
boundary residuals of the normal momentum equation
{B/s) using the influence matrix;

{vi) Recompute the pressure field using the new
boundary pressures and a modified right-hand side, ie.,
solve Vip"*! = —V.§+ 3T V.8 b, with p,= 2, on 402;

(vii) Solve the momentum equations in the non-
periodic directions once again using the new pressure field,;

{viit) Finally, solve the momentum equation corre-
sponding to the periodic direction.

An important issue relating to the influence matrix is its
invertibility for incompressible flows, The influence matrix
is singular for the zeroth wave number {k =0). One reason
for this is the arbitrariness of the level of pressure field in
incompressible flows. In addition, the “collocation correc-
tion” procedure introduces more singularities. The influence
matrix without the “collocation correction” has one zero
eigenvalue while that with the “collocation correction™ has
four zero eigenvalues. Tuckerman [19] discussed in detail
the implication of these zero ecigenvalues of the singular
matrix and the associated nuli vectors, She suggested a pro-
cedure to obtain a related non-singular matrix which would
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behave the same way as the original matrix for the purpose
of obtaining a solution. In this procedure, first the cigen-
values and the eigenvectors of the singular influence matrix
are determined. The zero eigenvalues are then replaced with
any non-zero value (say, one) and a modified influence
matrix with the new eigenvalues and the original eigen-
vectors is constructed. This influence matrix is then
inverted and used in the computation of /s and §'s. In the
present computations, the threshold value below which the
magnitude of an eigenvalue on the CRAY Y-MP is
considered to be “zero” has been set to 1.0x 1071 The
selection of this threshold value depends on the grid size,
Reynolds number and A:.

Another important- consideration in the present proce-
dure is the storing of the influence matrix. Without the
“collocation correction,” the size of the influence matrix is
AN, + N, —2) % 2(N,+ N, —2) per wavenumber, where
N,+1(0to N)and N, +1 (0 to N,) are the number of
collocation peints in the x and y directions, respectively.
When the “collocation correction” is included, the size of
the matrix increases to 4N, + N, —2)x4(N, +N,—2).
For N_ = N, this matrix requires for each wavenumber a
storage of approximate size 64N 2. While the CPU overhead
for the generation of the influence matrix is amortized over
the total integration time of the problem, the memory
requirement of these arrays for all streamwise wavenumbers
15 large and practically unaffordable for large grid sizes. To
tackle this problem, we have used the BUFFER IN/
BUFFER OUT option available on CRAY computers. This
option reduces the active memory requirement by retaining
in memory only the inverse of the influence matrix for two
wavenumbers at any time. While computations are being
carried out for the first of these two wavenumbers, the
influence matrix corresponding to the second wavenumber
will be read in an asynchronous manner. For the examples
considered here, this asynchronous data read neither
increases the CPU time nor the wall clock turn-around time
in any significant manner when implemented on CRAY
computers. Also, significant reduction in the size of the
influence matrix can be achieved by utilizing the quadrant
or octant symmetry present in rectangular geometries.

To summarize, the collocation correction is an additional
correction to the pressure field such that the interior and
boundary divergences arc identically zero to machine
accuracy. This correction is necessary because the boundary
residuals in the momentum equations are non-zero due to
the discrete representation of the spatial operators and their
effect should be included in determining the pressure
distribution,

4. APPLICATIONS AND RESULTS

The above described numerical procedure (including the
“collocation correction™) has been applied to two test
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problems: (a) 2D flow in a driven square cavity and (b) the
decay of a 3D perturbation in a fully developed laminar flow
through a square duct. The test problems are intended to
verify that the time-evolving flow field remains divergence-
free in the interior as well as on the boundary of the domain.
The test problems have also been solved using the influence
matrix method without the “collocation correction” and the
fractional step method [15]. In the fractional step method,
zero Neumann boundary conditions were used for the
scalar potential (¢”*"). The normal component of the inter-
mediate velocity was set to Zero on the boundary and the
tangential velocity was calculated using the following
expression: -1 = A:(2Vg¢" —V¢" ') - 1 on 80, Results [rom
all three methods have been compared to assess the relative
magnitudes of the velocity divergences as well as their effect
on the flow ficld. For the ease of comparison, the three
methods are numbered as follows: Method 1 represents the
influence matrix method with the “collocation correction™;
Method 2 corresponds to the influence matrix method
without the “collocation correction”; and Method 3
represents the fractional step method.

4.1. 2D Flow in a Driven-Square Cavity

The 2D flow in a driven-square cavity is simulated at a
Reynolds number of 200, based on the half-width of the
cavity and the velocity of the top wall using a grid of 16 x 16
in the x and y directions, respectively. The Gauss—Lobatto
distribution is used to generate the grid. To avoid
singularity at the top corners, the velocity distribution
along the top wall is ramped using an exponential func-
tion (u,,=1—exp[ —100{1 —x?}*]}. The calculation is
started with flid at rest and the top wall is suddenly moved
at t=07. Table I gives the CPU time per time step (on
the CRAY Y-MP), the boundary slip velocities, and the
maximum interior and boundary divergences for the three
methods after 60 time units. It can be seen that with the
collocation correction, the velocity divergence in the
interior as well as on the boundary is machine-zero while

TABLE1

Comparison of CPU Time, Maximum Boundary Slip Velocity,
and Maximum Interior and Boundary Divergences in a Driven
Square-Cavity Flow Computed Using the Three Methods

Method 1 Method 2 Method 3

CPU time (s)/ 0.008 0.007 0.0056
time step

Max. interior 374 %10~ 0.543 7.73x 1071
divergence

Max. boundary 50xig~! 7.68x 107¢ 332
divergence

Mazx. boundary 0.0 00 38x 107"
slip velocity
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TABLEII

u-Velocity at Selected Points along the Vertical Centerline in a
Driven Cavity Flow Computed Using the Three Methods

¥ Method 1 Method 2 Method 3

—1 0 0 1.77678 x 102
—0.980G785 —0.0153093 —0.0151103 —0.0143264
—0.92388 —0.0576761 —0.0576926 —0.0582984
—0.707107 —0.206494 —0.20079 —0.206106
—0.382683 —0.323367 —0.320364 —0.327129

0.382683 0.113123 0.110917 0.109836

0.707107 0.292598 0.293723 0.297072

0.92388 0627434 0.630469 0.633536

0.980785 0902351 0.902287 0901518

1 1 1 1

the maximum divergences in the other two methods are
appreciable. Tables IT and HI show the values of v and v
velocities at selected points along the vertical centeriine. The
differences in the velocity field are a result of not satisfying
the divergence conditions everywhere in the domain. The
differences are largest near the boundaries. Accordingly the
velocity gradients implied by the three solutions could differ
significantly near the boundaries.

4.2. Decay of a 3D Perturbation in a Laminar Flow

To test the scheme for a 3D problem with two non-
periodic directions and one periodic direction, the decay of
a 3D perturbation in a fully developed laminar flow through
a square duct has been simulated. For this problem, z
represents the streamwise {periodic) direction, and x and y
represent the transverse directions. A divergence-free 3D
perturbation is superimposed on the fuliy developed
larinar flow and the temporal evolution of the solution is
computed using the three methods. The induced perturba-

TABLE 11

v-Velocity at Selected Points along the Vertical Centerline in a
Driven Cavity Flow Computed Using the Three Methods

¥ Method 1 Method 2 Method 3
-1 0] 0 0
—0.980785 5.6308 % 10~F 0.00121361 —0.0030767
—0.92388 —0.0004967 0.00255354 —2.808x10°°
—0.707107 —0.6030082 —0.0005287 —0.0012029
—0.382683 0.02485599 0.02650375 0.02688145
0.382683 0.07176275 0.06782609 0.06725114
0.707107 0.0707148 007537123 0.07703139
092388 0.0068781 0.00929236 0.00721779
0.980785 ~0.0002314 0.00059931 —0.0002377
1 0 ¢ 0
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TABLE IV

Comparison of CPU Time, Maximum Boundary Slip Velocity,
and Maximum Interior and Boundary Divergences Computed
Using the Three Methods in a Fully Developed Laminar Flow
through a Square Duct Subject to a 3D Perturbation

Method 1 Method 2 Methed 3

CPU time (s)/ 0.268 0.245 0.18
time step

Max. interior 14x107" 799% 10~ 234x10-!
divergence

Max. boundary 40x 10~ 128 %1071 298x 1072
divergence

Max. boundary 0.0 0.0 406x 1078
slip velocity

tion is similar to that used by Moin and Kim {11] and is
given by

W(x, y, z}=—¢e[1 +cos(nx)] sin{xy) sin(z)

v'{x, y, z) = —esin(nx)[ 1 + cos(ny) ] sin(z) (30)

w'(x, y, z) = 2ne sin(nx) sin{ny) cos(z),

where ¢ is the amplitude of the perturbation. The nor-
malized domain of computation is 2 x 2 x 2n. The grid used
was 32 x 32 x 16 and the time increment was 5 x 10 °, The
Reynolds number based on the friction velocity and the duct
half-width was 30 and a fairly large value (0.3) was chosen
for & Table IV shows the CPU time, the boundary slip
velocities, and the maximum interior and boundary
divergences for the three methods after one time unit. Once
again, the velocity field obtained by Method 1 is divergence-
free while the velocity fields obtained by Metheds 2 and 3
have small divergences. However, the differences in the
velocity fields are negiigibly small. The CPU time for
Method 1 is 44 % more than that for Method 3.

Finalty, the CPU time, memory requirements, and

TABLE YV

Run Time Statistics for Method 1 on Different Grids

CPU time (s}
for generation

of influence CPU time (s)/ Memory
Grid size matrix time step (MW) MFLOPS
l6x 16x16 1.12 0.061 04 145
32x32x16 9.0 0.268 1.0 236
32x32x32 14.15 0.50 1.45 238
64 x64x 16 86.4 1.7 29 266
64 x 64 x 32 152.0 34 4.72 267
10} x 100 % 16 438.0 6.15 6.53 250
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computational performance (MFLOPS) for six grid
sizes [16x 16x 16, 32x32x 16, 32 x32x32, 64 x 64 x 16,
64 x 64 x 32, and 100 x 100 x 16] are given in Table V for
Method 1. Also given in this table are the CPU times for the
generation of influence matrix.

5. CONCLUSIONS

A Chebyshev collocation procedure that satisfies the
divergence-free condition on the boundary as well as in the
interior of an incompressibie flow with two non-periodic
directions has been presented. An influence matrix tech-
nique combined with a correction methodology [16, 19]
is used to satisfy the continuity equation everywhere in
the domain. Details of implementing this procedure in a
collocation method are presented. This “collocation correc-
tion™ accounts for the effect of non-zero residuals in the
boundary momentum equations arising due to the discrete
representation of the spatial operators. The procedure has
been demonstrated to yield machine-zero divergences in
two test problems. An efficient solution procedure based on
matrix diagonalization has been used to soive the
discretized equations. Results are also presented for the
fractional step method and the influence matrix method
without the collocation correction. It is seen that the CPU
time and the memory requirements for the present procedure
are not significantly greater than those for the fractional

step method and the influence matrix method without the

collocation correction.
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